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ABSTRACT

The paper considers stochastically constrained nonlinear program-
ming problems. A penalty type method is suggested as a deterministic

surrogate. The penalty is constructed in terms of a "distance'

function between random variables,given in term of the ¢-divergence

functional (a generalization of the relative entropy). A duality theory

i

is developed in which a general relation between 1$-divergence and utility

functions is revealed, via the conjugate transform, and a new type of

. . R T L0 Do .. el A ;'
certainty equivalent concept emerges. Ry . SRR ‘ )

—

7 —

Key Words: Stochastic Programming, Penalty Functions, ¢-divergence,

F;' Entropy, Conjugate Duality, Utility Functions, Certainty Equivalent.
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1. Introduction

Yo by

In this paper, we consider mathematical programming problems with stochas-

tic constraints of the form:

o
._'-
L

(SP) inf{gy(x): g(x,b) < 0}

where x ¢ B is the decision vector, g,: 2" - R, g: 2" x lk + X0 are

given functions and b ¢ lk is a random vector. A new penalty~type decision
theoretic approach to treat problem (SP) was introduced recently by Ben-Tal
[2]. In this approach, the stochastic program (SP) is replaced by an

unconstrained deterministic program:

(DP) inf (go(x) +p PE(x)}

D R san acd
3

where p > 0 1is a penalty parameter, and PE is a penalty function for

violation of the constraints in the mean, i.e. PE(x) =0 if E g(x,b) 5_0’

and PE(x) > 0 otherwise.

The special feature of this approach is the choice of the penalty

function PF, which is constructed in terms of the so-called

Kullback-Leibler relative entropv functional, (or divergence), widely

used in statistical information theory, [9], [10].

If mk is the set of all generalized densities £ of random vectors

zZ € lk with support T (all absolutely continuous with respect to a common

non-negative measure dt), and fb is a given density in Dk, of the random !

k
vector b € R, then the relative entropy between the random vectors z (with

T —v'.r'*vv-rvvl'P'V‘. Yf.:‘vva. ot

£ denotes the expectation operator with respect to the random vector b.
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density f € Dk) and b (with density fb) is

_f(e)

I(f,fb) = f f(t) log f (0

T
The penalty function PE is defined in [2 ] as the following infinite

dt f el

e’

dimensional optimization problem:

P (x) = iaf {[ £(t) log ffgt) de: I g(x,t)E(t)de < o} (1.1)
t) -
fen, 'y :

and is accordingly called entropic penalty.

Many attractive properties of the entropic penalty and of the induced

deterministic program (DP) are obtained using a fundamental dual representation

of PE derived in [2):

t
P (x) = sup {-log E e it g(x,b)} .

y20

In particular, the dual expression of P is used to express the

E

deterministic problem (DP) as a saddle function problem, and for the important

special case of problems with stochastic right hand side:

(SP-RHS) inf(go(x): g(x) > b}

it is shown there, that the primal entropic penalty program (DP) generates

a dual problem which consists of maximizing the certainty equivalent of the

classical Lagrangian dual function of (SP):
T
hb(y) := inf {Lb(x,y) = go(x) + v g(x,b)}
X

i.e., the dual problem is:

o e O PR P A P P D VA W P L W AL S W ST T G S PP
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-1
max u ~Eu(h (y))
y>0 "

where u 1is an exponential utility function and u--J is the inverse of u.

This interesting dual relationship between the minimization of the classical
relative entropy functional and the maximization of expected utility, give
rise to the following natural questions:
(1) Does such duality results hold for arbitrary utilities, (not just
exponential)?
(2) Assuming (1) holds, what is the corresponding entropy-type functional
involved in defining an appropriate penalty functiom?
(3) How does the new entropy-type penalty relate to utility functions
and is it appropriate to treat stochastic programs (SP)?
In this paper, we aim at generalizing and unifying the results derived

in [2], and provide satisfactory answers to the above questions. The key to

the generalization is the concept of ¢-divergence, I¢, introduced by
Csizar [7]. It includes most of the important entropy type functionals used

in mathematical statistics. Its legitimacy as a measure of 'distance"

between probability distributions as well as some of its basic properties
needed in this paper are discussed in Section 2. Adopting this concept here,
a generalized penalty function P¢ is defined by replacing in (1.1) the classi-

cal divergence I (based on the special choice ¢(t) = t log t) with I .

B )
;:~ In terms of the ¢-entropic penaltv P¢, the stochastic program (SP)
pr

b -

® is replaced by a deterministic program:

;-

o (o), 1:f {gg(x) + P¢(x)} .

L. The properties of P(ﬁ and its appropriateness in treating stochastic programs
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&.

o

-"-,-

-,

e

f‘,
'@
S

. . . . e w - . - . . e
b e e . . T L S S B
I . R I RIS L R e PRIV DR Ry TOC PRI NP ]
. S e e e e e B . - R . DA L A SRR Setrat TR s e oo e
t. . > R . Ty niala IRPRC VIR SRS IS PLY S S PTG A A e e i AN AN 0 el e s e




T Ty ety s -v‘_:"’}ﬂ

(SP) by its deterministic surrogate (DP)¢ is discussed in Section 5.

A crucial step in studying these properties is the derivation of a simple
dual representation of P¢, see Section 3., This representation also enables
us to associate in a natural way, the kernel information function ¢ with

a utility functiom u, wvia the conjugate function ¢* of ¢. In terms of

this utility function, we introduce in Section 4 a new type of certainty
equivalent concept, possessing for arbitrary utilities many of the properties |
that the classical certainty equivalent possesses only for exponential
utilities. A similar type of such 'mew certainty equivalent" was first
introduced by the authors in [3] from intuitive economic consideratioms.

In the last section, we treat stochastic right hand side problems, and
generalize the results in [2] on the duality between the primal
entropic penalty program (DP), and the problem of maximizing the classical
certainty equivalent of the Lagrangian dual function hb(y). It is shown
here that the dual problem associated with (DP)¢, consists of maximizing
the new certainty equivalent of hb(y).

Finally, it is perhaps worthwhile to point out that many other problems

In this section, we discuss some properties of the ¢-divergence in terms

&

= which appear in a variety of applications (see (8], [21], [22]) fit the formalism

ﬁi of the ¢-entropy problem, thus can benefit from the duality framework develovoed

S

it in Section 3. This will be discussed elsewhere in a future paper.

h"‘. ) L
-

Ejf 2. The ¢-Divergence and the Induced ¢-Entropic Penalty

L.'_'

| ®

;j‘ of which the ¢-entropic penalty is constructed. Let T be a locally compact
-

ﬁf‘ Hausdorff space, F the o-field of Borel subsets of T, dt a nonnegative
F"' regular Borel measure (rBm) on T, and M(T) the linear space of real-valued
@

{;' finite rBm's on T.
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Let U and uz

1

solutely continuous with respect to dt,

Nikodym derivative) of

Assume here and henceforth in this paper that ¢:

continuous proper convex function, so dom ¢ := {t:

p(t) > -~=» Vt € !+.

For a given function ¢ € ¢,

“1 and u2 is defined

du

i
fi(t) = —

My by: dt

in terms of their densities as:

£,(t)
I¢(f1,f2) 1= J fz(c) ¢ ?2—(-{_3' dt .
T

Wy .t TV aT a T a™ v a8 v 8 & °

be two probability measures which are assumed ab-

we denote the density (Radon-

‘+ - R is a
d(t) < =} # ¢ and
The class of such functions will be denoted by ¢.

the ¢-divergence of the distributions

(2.1)

The concept of ¢-divergence (or ¢-relative entropy) has been introduced by

Csiszar[6] as a generalization of many other entropy~type functionals, widely

used in statistical information theory (see, e.g. [4],[9],[15],[21]:

Kernel function

The ¢-divergence

Name/Source

£, (t)
¢(t) = tlogt-t+l I¢(fl,f2) = J fl(t) log Eifgy dt (Kullback-Leibler {10])
T
2
o(t) = 5 (1-t) I (£1.)) = 5[ F(oy ot | (Ragan 19D)
T
oe) = == % S 1] L (f,,E) = = fa(t)fazi) dt + | (a-order diver [151)
a-1 © 7 a-1 o' f10t2) T o 1t orcer divergemce
T
@ >0, a4l const.
5(t) = (1-/0)° Iy(f,f)) = j (/EI-/E;)Z dt (Hellinger distance [4 ])
T
d(e) = jl-tf Iy(fy,6y) = Jlfl(t)-fz(t)ldt (Variation distance [21]))
T
TABLE 2.1. Excoples of ¢=-diverpmencn

.....
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We assume here, and henceforth that ¢(1) = 0 and lim ¢(t) = ¢(0),

t+0T
O¢(%§ = Q, 0¢(%9 = lim ¢ ¢(§) = a lim ¢it) , a €(0,+). All the examples
g0 tro

in Table 2.1 satisfy these requirements.

The following result follows directly from {7, Lemma 1.1], it explains

why I can be used as a measure of distance between two random variables.

¢

Proposition 2.1 The ¢~divergence functional (2.1) is well defined and

non-negative. It is equal to zero if and only if f, = £, (a.e.)
1 2

O
The ¢-divergence also possesses an important convexity property:
Proposition 2.2 I¢ is convex in each of its arguments.
Proof: The convexity of ¢ 1is equivalent (for t > 0) to that of
1
$,(t) := t¢(;ﬁ
and
fz(t)]
I¢(fl,f2) = ];¢ (fZ’fl) = f fl(t)¢o ) dt . (2.2)
° ! 1Y)

Now, the convexity of I¢ in fl is obvious, while its convexity

in f2 follows from (2.2).
O

Adopting the concept of ¢-divergence and following the definition

of the entropic penalty PE given in (1.1), we define now a generalized

penalty function P¢(-) called ¢-entropic penalty as

P! (P) P¢(x) = inf {f pfb(t) ¢[ff§§§} de: f g(x,t)f(t)dt < O f
T

o FEDk . b T




Observe that we have built into the definition of P a penalty parameter

¢

p > 0. This parameter enables the decision-maker to control the size of the
penalty so as to reflect his subjective attitude towards constraints viola-
tions. Note that, by choosing ¢(t) = t log t,f one obtains P¢ =p PE where
PE is the usual entropic penalty (see eg. (1.1)). In terms of the ¢-entropic

penalty, a surrogate for the stochastic primal (SP) will be the deterministic

primal problem:

(DP) inf {go<x) + P¢(x)}

n
xelk

¢

Properties of the ¢-entropic penalty and of the induced deterministic program

(DP)¢ will be derived via the duality framework developed in the next sectionm.

3. Duality Theory for the ¢-Entropic Penalty Problem

Let X and X* be real vector spaces, and <+,*> a bilinear function
defined on pairs (x,x*), x e X, x* ¢ X*. Let X and X* be equipped
with locally convex Hausdorff topologies, compatible with the bilinear form,
so that every element of one space can be identified with a continuous linear

*
functional on the other. In this case X and X are called paired

spaces and < , > {is the pairing. For further details, see [4].
Now let X and Y be real vector spaces, A: X =+ Y a linear operator,

h: X + R a convex function with dom h =S5 and g: y > R a concave function

@
o with dom g = Q. Consider the primal problem:
M.

- (A) inf {h(x)-g(Ax): x e S, ax ¢ Q} ,

L

f the Fenchel-Rockafellar dualitv theory [20] associates with (A) the dual

problem:
-
L.’ ‘or :(t) =t log t-c+l (as in Table 2.1) which is the normalized form, i.e.

(L) =290
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* * * *
(B) sup {g*(x*) ~ h*(A x*): x* e Q , Ax*e S}

l * * * * *
) where A : Y -+ X is the adjoint of A, X and Y are the spaces

paired with X and Y with the pairing <',->x, <-,'>y respectively, and

h*,g* are the usual convex and concave conjugates of h and g, i.e.:

] — . L

,
]
"‘.
.
.-

h*(*) = sup {<x,'>x-h(x)}
XeS

gx(*) = inf {<y,*> -g(y)} .
yeQ 7

* *
Further, S = dom h* and Q = dom g* .
The value of the ¢-entropic penalty at a given point x is obtained as

the solution of the infinite dimensional convex optimization problem:

(P) inf I pfb(t) ¢[?£%%%J dt (p > 0)
subject to J gi(x,t) f(t) dt < 0 i=1, ..., m. 3.1
T

We set problem (P) in the format of the convex program (A) as follows:
Consider the linear operator B: M(T) » g" given by

T

VIR .

j 8m(;,t)du
T

and the integral functional

J pfb(t) ¢[f (t)] dt if u is an absolutely
b continuous 2Bm, and
f -t

dt
© otherwise

J(u) := pI¢(f,fb) =

L 4 Let T be the linear function u =+ J dy . Then problem (P) can be

written as:

DL R N L . 3 N - A U I VR Ny PO : PP WA VAR S




inf {J(w): Bw <0, T =1}

By propositicn 2.2, J 1is a convex functional, and it is easily seen

that (P) corresponds to the convex program (A) with:

B
S=dom J, X := M(T), Y = E%2, h(e) := J(+), A :=]T|,
-T
0
a:=| 1|, Q :={z ¢ ™2, . < a} aund
-1
. X _ %
-g(*) := 6{+|Q) (= indicator of Q) . Elements x €Y are given as:
*

X = (Yvn+’n_)-

Substituting these in the associate dual (B), we have:

Lemma 3.1. The dual problem of (P) is given by

(D) sup sup {n - h*(n-ytg(x,t)) (3.2)
Yexf nek
NN, if x*x <0
Proof: A simple computation shows that g*(x*) = (3.3
- otherwise
S0 Q* = {x* = (y,n+,n_)t: x* < 0} . Further, we note that the adjoints of

A and T are respectively:

A*.RXR2+C(T). *x % * * T* t * *
: t Ax =B y+T n -T n_=y g(x,t)+T n -T n_ (3.4)

: * *
) T : R+C(T) T s=s (A constant function in C(T)) (3.5)

where C(T) 1is the linear space of continuous function on T, wusually

; - identified with the dual space of M(T). Therefore, substituting (3.3), (3.4)
o

and (3.5) in problem (B) with n := n, - n_ and replacing y by -y,

we obtain the desired result. 0

T

In nroblem (D), the dual objective function is expressed in terms of

- h*, which here is the conjugate of the integral functional J(+). The i

. o o C "A::."._ S o e 'L'A-_AJ
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conjugate of J 1is computed in the following result.

*
Lemma 3.2. Let ¢ ¢ &, the conjugate J : C(T) + R of J is given by:

J pfb(c) ¢*(££%l) dt 1if f(t) = %% , U abs. continuous (dt)
sey = 4T (3.6)

otherwise

Proof: Let C(T) be the space of all continuous functions x: T -+ Lk

with the norm

lx|] = max [x(t)] .

{ teT
i].— Consider the integral functional I: C(T) =R given by:
t I(x) := J pfb(t) ¢*(§S§l) dt := f F(t,x) dt

T T
The conjugate of I 1is then by definitiom:

*
I (u) = sup {I xduy - J F(t,x)dt: x € C(T)}
T T

*
Using general results on the computatiom of I (see e.g. (18], Theorem &

t and Corollary 4.A, pp. 452-454) it is easy to verify that for a given
E' 5¢¢ and £ e D, F(t,x) = pf (t) ¢*(x(;)) satisfies the assumptions
H’r required there, and so, we have
).
*
» J F (t, %% if p € M(T) is abs. continuous (dt)
. T
*
X I (W = (3.7)
[ .
o ® otherwise
=
v': E *
F i where F (t,x*) 1is the conjugate of F(t,*) at x* (for fixed ¢t).
=
@

* X xx* X
Here F (t,x*) = sup {xx*-pf (t)¢*(Z)} = pf (t) sup { - ®*(—)}- (3.8)
xe ¥ b P b x (P (E) P

...............

.
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Since ¢ ¢ $, hence continuous, we have ¢ = ¢p** and thus from (3.8):

pE, () ¢{;;’(‘—:)] x* >0

*
F (t,x*) = ) (3.9)

o otherwise
Setting x(t) := f(t), and combining (3.7)~(3.9), we have obtained
*
I (W =JW
Moreover, by the continuity and convexity of I, we have also:
* fok
J(f) =1 (f) = I(f)
* *
and S =dom J = C(T), and thus (3.6) is proved. ]

Combining the results in Lemmas 3.1, 3.2, we have actually proven

that the dual problem of (P) is given by:

t
(D) sup, sup {n - J pfb(t)¢*Fer§£§4£l] de} (3.10)
yER, nek T P

a finite dimensional concave program involving only nonnegativity constraints.

Duality results concerning the pair of problems (P) - (D) will now

follow.
Theorem 3.1. (a) If (P) is feasible, then 1inf(P) is ‘attained and
min(P) = sup(D)

Moreover, if there exists a density f ¢ mk satisfying the constraints (3.1)

strictly, then sup (D) is attained and

min(P) = max(D)
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(b) Under the additional assumption: 1lim ¢*(t) < = then:

-

sup(D) < =« if and only if (P) is feasible .

Proof: (a) The result follows immediately from Rockafellar [20] (Theorems
3,4, pp. 178-179). 1Indeed, the fact that the dual (D) given in (3.10), has
Jnly non-negativity constraints y > 0, it safisfies the strongest constraint
qualification, implying that (D) is stably set, hence the first part of
conclusion (a) follows. Also, since £ ¢ mk satisfies the constraints (3.1)
strictly, (i.e., the familiar slater regularity condition) then (P) is stably
set and thus the second part of (a) is proved.

(b) The implication (P) feasible => sup (D) < » follows trivially

from weak duality (without any assumption on the problem (P)). We prove

now the reverse implication:
(P) infeasible => sup(D) = =
The feasible set of (P) is
{Bu < 0, Tu =1, u nonnegative} . (3.11)

Using a duality theorem for linear program in vector spaces (see e.g.

{13], Theorem 3.13.8, p. 68), it follows that (3.11) is infeasible if and only

. if the system

* * m
-By+Tn<0, n>0, ye x+ (3.12)
3 .
2 is feasible. (B ,T are as defined in (3.4) and (3.5) respectively.)
h -
o Thus the feasibility of (3.12) implies that:
L )
Iv>0, n>0: n-yg(xe) <0, n>0 . (3.13)
b
@

.
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By taking (y,n) €iR: xR, from (3.13), and choosing y = My, n = Mn

with M > 0, the dual (D) (see eq. (3.10)) becomes:

= =t
- * - .
sup(D) > sup {Mn - f pfb(t)¢ ME (x t)))dt} (3.14)
M>0 s P
and since 1lim ¢*(t) < @, the sup in (3.14) can be made arbitrary large.
tr-= .
a

4. A Representation of the ¢-Penalty in Terms of a New Certainty Equivalent

Throughout the rest of this paper we deal with the class of functionm
*
¢ € ¢ which are strictly convex, essentially smooth( ) (see [17], Section

26), and with ¢'(l) = 0. We denote this class by 0.

Recall that a dual representation of the ¢-entropic penalty is given

by (3.10) as:

t
P¢(x) = sup sup {n - f pfb(t)¢*(3:z—g£§*£l)dt} . (4.1)
y>0 n€R T P

Let us introduce the utility function u as:

ult) = =4 (-t) . (4.2)

Then u 1is a strictly concave essentially smooth function (see [171],
Theorem 26.3) with u(0) = 0, u'(0) = 1 (this is implied by ¢(1) =0,
$'(l) =0Q). Table 4.1 gives the utility functions corresponding to the

kernels ¢ given in Table 2.1.

(*) All functions given in Examples 1-4 from Table 2.1 are indeed essentially
smooth.

- N R . . | - . . '. "' . "‘." . .
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Kernel function Utility function

¢ (x) u(t)

-t
X log x-x+1 1 -e
1 2 1.2
2 (1-x) -3t
2 t

(1 - ¥x) Tre (t>-1)
1l a a
=1 ¥ "o x+1 1-(Q1- )B 1)

Table 4.1: The utility functions corresponding
to the information-kernel functioms.

In terms of u, (4.1) can be written as:

P (x) = sup sup {n + pEu(x-zii‘EL—-)} (4.3)
y>0 n€R

A little algebra shows that (4.3) can be also written as:

P (x) = sup pesup {n + Eu(y—gi’hb—- (4.4)
y>0 n€R

For a random variable X, let us define the quantity:

S (X):= p sup {n + Eu(- -n} . (4.5)
néER

The latter was introduced by the authors in (3] (with p=1), and termed the

new certainty equivalent of X.

e v W W, T YT T

From (4.4) and (4.5) P¢ is given by:

P,(x) = sup $ (vtg(x,b)), (4.6)
y>0 P

so the properties of P¢ are directly related to those of the new-certainty

equivalent. The next result summarizes some basic properties of S (X).

.o fa - . : . .~ - - RN R ‘-"-Z\i
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Lemma 4.1 Let p > 0 be fixed. For any random variable X and a

counstant w € R:
(a) Sp(w) =W
(b) sp(X) < E(X)
(e) sp(x+w) - SP(X) + w.

Proof: (a) By definitionm, Sp(w) = p sup {n + u(%-n)}, equating the
n€ER

derivative of the supremand to zero we obtain u'(%- n) = 1, hence

since u'(0) = 1 and u' 1is strictly decreasing (as a derivative of the

strictly concave function u), the supremum is attained at n = % and

its value is then S(w) = p °§ = w.

(b) Since u 1is strictly concave, u(x) < x for all x $# 0 hence

S () =powp n+EuE -l <psw (n+eE -0} =2X®.
P n€ER P n€ER P

(c) By definition:

Sp(x+w) p sup {n + Eu(%w- -nl ,

nER

>

hence with n=n - % , one obtains

S (X+w) = p sup {n +E+Eu(§- M} =w+ S_(X).
P Zem P P P

a
E‘_ The additiving property given in Lemma 4.1 (c) will be of fundamental
F‘ importance in deriving the duality results of the next section. Note that
. property (b) in the lemma corresponds to risk aversion (concave utility).
g
P.
¢
>
‘-
-
%
..
¢
P_'
- _ T .
- B R i S TSI s TN e : -
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Example 4.1 [Exponential utility]
*
Let ¢(x) = x log x-x+1, then ¢ € Ql. Its conjugate is ¢ (t)-ec-l,
so by (4.2), the induced utility is u(t) = l-e-t. The new certainty

equivalent is then
Sp (X) =-plog Ee” X/p .

Here the new certainty equivalent coincides with the classical certainty

equivalent corresponding to the utility fumction u(t) =1 -e-t/p, i.e.,
5, (x) = lEAR).

The parameter p is exactly the reciprocal of the Arrow-Pratt risk aversion

indicator (-ﬁ"/&'), see [14].

Example 4.2 [Quadratic utility]
2

Let ¢(x) -'% (x-l)z, then u(t) = t - %r and

1 2
S X) mpuy-=—o¢
p() " 2p

where u is the mean of X and 02 the variance.

Example 4.1 showed that, for exponential utilities, 1/p is exactly

the classical Arrow-Pratt risk indicator. This role of 1l/p as a measure

>{ﬁ of risk, is further explored in the next two results, which incidently
P~
? provide a generalization of Theorems 1 and 2 derived in Bamberg and
@
o Spremann [1] (proved there for the case of exponential utilities omly).
. Lemma 4.3(a) below will be also of particular importance in deriving the
b
%; duality results of Section 6.
@
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:
Lemma 4.2 lim S_(X) = E(X) ([Risk Neutrality].
. —_— o P
I r
' Proof: Let a:--% and define
0 v(a):= sup {n + Eu(aX-n)} 4.7
! n€ER
E Equating the derivative of the supremand to zero we obtain:
E:I .
P Eu'(aX - n) =1 .,

1 Since u' is strictly increasing, by the implicit theorem we have

v(a) = n(a) + Eu(aX - n(a)), (4.8)

LS i M

where n(a) is the unique solution of

Eu'(aX - n(a)) =1 . (4.9)

From (4.9), u'(-n(0)) = 1 and then n(0) = 0.

In terms of v(a), we have with a:--%

AC)
SP(X) " . (4.10)

Thus, 1lim § _(X) = lim"—'-gc;a-l -~%
¢ P P a0

and by L'Hopital rule we get:

lim S _(X) -lim—‘ﬂl‘—’-)- = 1im {n'(a) + E((X-n'(a))u'(aX-n(a))] = ECX).
pe P a0 a0 a

Lemma 4.3 Let X be a random variable with infimum gupport XL > -m

T‘v‘vlf'r.r.'.(‘w' Bt S Sl

and with supremum support XR. Then,

YT T
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(a) VE>O ;.inol 5,(0 <X +€

(b) 1If, in addition, u 1is strictly increasing we have

lim S_(X) = [Risk averse].
pro P L

Proof: (a) A (one dimensional) special case of problem (P) is:

xR
@, inf {pI,(£,£.): J s(t)£(t)dt < 0}
1 fep, ¢ 7%
1 %
Consider now the problem (PE) obtained from (P)l with g(t):-t-X.L-é,
namely
xR
(Pg) 225 {pI¢(f,fx): I tf(t)de < X + €}
X

The dual of (P€)’ obtained from (4.6) is:

S((X" 'e))’
s;g py XL

and using the addizivity of Sp (Lemma 4.1(c)) and (4.7), it becomes:

(D) sup {S_(yX) -y(xL + €)1} .
y20 P

Problem (PG) is clearly feasible Y€ > 0, and so from weak duality

¥ between the pair (P.) - (D), we have:

[ |

- (PG) feasible = sup(De) <w (4.11)
: Hence,

-

3

4 ® > sup(D ) > lim yrm‘(}&‘ + E)]
[ Ty b

»-

[-

k.‘

‘f.'




Theorem 5.1 For any ¢ € ¢, the ¢-entropic penalty fumction P ¢
satisfies: #
(1) 0 if Eg(x,b) <O ]
P (x) = .
¢ -
positive if Eg(x,b) £ O j

S SN IR P S . e e te M W Tl
NI ST UPRPR PSP 8. P5 VI LV o, PR PEVTPE v VEWE S Y SV UL WY SV
", O

S_(yX)
1m—2—-<xL+e . (4.12)
y L
y—m
S (yX)

Now, it is easily verified that —py—- = Sp/y(x), hence (a) follows from
(4.12).
(b) . @ >0 oaX-n>oaX -n and since u 1is assumed strictly

increasing we have:
n+Eu(eX - n) 2 n +uleX -n)

SO

S (X) > pesup {n + u(iL- -m}
P n€ER P

The latter supremum is easily computed to be X.L and so

sp(x) 2 XK.

This combined with (a), proves (b). O

S. Properties of P¢ and a Min-Max Representation of (DP)¢

In this section we derive the properties of P, and discuas its

¢
appropriateness in treating the stochastic program (SP), using (DP) 6

. e A P UL TR ot
W -“-. Ve “.".- AP S " .“' ':\\. ."'. A N .
X - -




20

* *
(i1) Under the additional assumpcion (AI): lim ¢ (t) < =
t—)_ﬂ

P (x) ma if for some 1 g, (x):= inf g, (x,b) > O.
] 23 bET i

Proof: (1) Let Q(x,y):= Sp(ytg(x,b)) then

P¢(X) = sup Q(x,y) > Q(x,0) = S_(0) =0 (5.1)
>0 P
¥z
The later equality comes from Lemma 4.1(a).

Now using Lemma 4.1(b) we have:
Q(x,y) f_ytEg(x,b)

with equality only for y = 0 and so
P¢(x) = sup Q(x,y) < sup ytEg(x,b)
y20 y20
If Eg(x,b) < O, the last inequality shows that P¢(x) < 0 which together
with (5.1) proves the first part of (i).
Assume now that for some

i€ (1,m], Eg, (x,b) > 0. (5.2)
Let Qi(x’yi):'Q(x$0)"',yi)""o) - Sp(yigi(X,b)).

Then, we have Qi(x,O) = SP(O) = 0,

Moreover,
yigi(x’b)
S (y,8;(x,0)) = 7+sup {n + Eu( -nl}. (5.3) )
P n€ER
7y
- Since ¢ € ¢,, then the function wx(yi,n):-Eu'( ry gi(x,b)-n) is

y
continuously differentiable on ]R+x R and -a% wx(y,n) = -Eu"(Ti gi(x,b) -n) > 0.

o I ol o
» . .

* This assumption holds for Examples 1 (with a<1l), 2 and 4 in Table 4.1
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Hence, by the Implicit Function Theorem, there exists a unique solution

n = n(yi) to the equation wx(yi,n(yi)) = 1, and n(0) = 0. By the
definition of S(yigi(x,b)) in (5.3), as an unconstrained concave optimiza-
tion problem, an explicit expression of it is obtained by equating the

derivative of the supremand to zero, and therefore:

Yisi(x,b)
Qi(x,yi) = Sp(yigi(x,b) = p(n(yi) +Eu(——p—— - n(yi))) (5.4)
where n(yi) is the unique solution of
wx(yi,n) =1, (5.5)
Now, an easy computation shows that:
d_ Q, (%x,y )] = Eg.(x,b)*u'(-n(0))
dy, 1774 % ’

y;=0

but n(0) = 0 and u'(0) = 1, so we have under assumption (5.2):

-

3y, Qi(x,yi)] = Esi(x,b) > 0.

y4=0
Therefore, there .exist §i > 0 (close enough to zero) such that

Qu(x,5,) > Q(x,0) = 0 (5.6)
Noting that

P.(x) = sup_ Q(x,y) > sup Q,(x,y,) > Q, (x,5,) >0,
® 0<y € R® 0<y,ER R 1

and this proves the second part of (i).
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(ii) Let gi(x) > Q0 for some i. The latter means that problem (P)
(see (3.1)) is infeasible, hence under assumption (Al), invoking Theorem

3.1(b), this implies that P¢(x) = ®
a

The first part of the theorem demonstrates that P¢(x) is a penalty
function for violation of the constraints in the mean. The second part
shows that P, has the desirable property of excluding solutions which

$
are not feasible in (SP), for any realization of b, i.e., for x which

is infeasible with probability 1, P¢(x) - @,

Therefore, a suitable deterministic surrogate problem for (SP) is

(pp), inf {so(x) + P¢(x)}

? xER

From the additivity of he new certainty equivalent (Lemma 4.1(c¢))

iaf {g (x) + B, (x)} = inf sup S (g (x) + v g(x,b))
X x y>0 P

hence (DP)¢ can be written as a minimax problem:

(DP), 1inf sup S (Lb(x,y)) (5.7
xYZ_O P

where Lb(x,y) = go(x) + ytg(x,b) is the classical Lagrangian correspond-

ing the the original problem (SP). This result generalizes Theorem 2 of [2].
b We close this section by giving an explicit expression of P¢ for the
o familiar chance constraints problem [6].
b .
{_ Example 5.1: Consider the well known chance constrained program
r *
(ce) inf {go(x): Pr {g(x) > b} < a} (5.8)
‘.} wuich is a special case of the deterministic program :
5 inf (g (x): Eg(x,b) < 0} (5.9)
.fi * For simplicity we will treat here only the case of a single constraint,
o i.e., g: R® =R,
@
[
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N S

by choosing:

-
r]:
3

l-a if g(x) > b
g(x,b) = a € (0,1) (5.10)
-Q if g(x) <b

Using the dual representation of P¢ given in (4.4) we have:
P¢(x) = gup p sup {n + j Eb(t)u(z g(x,t) - n)de}l (5.11)
0<y€ER  n€R P
Recalling from (5.10) that here:

1w if g(x) > ¢
g(x,t) = a € (0,1)
-Q otherwise

we get from (5.11) in term of the cummulative distribution function F(*) u
of b: (denoting F:=F(g(x))):
P, () = sup p sup {n + FulZ - o) 4 (1-puC- Loy (5.12)

y>0 n€R

~

Let us define n:= - %} - n, then (5.12) becomes

~

P¢(x) =p sup { - n +(1-F)u(n) + sup { - &L + Fu(n + 4y (5.13
n€ER y>0 P

The inner supremum in (5.13) is computed first; by simple calculus, the

maximizing y 1is y* given by:

*

pWH™HE) - i 25w
Yy *

[ 0 otherwise.

O S o st aa ks

(The existence of (u’)-l is guaranteed, since u' is a derivative of a

(el

strictly concave function.)
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*
Substituting y 1in (5.13) yields:

p sup ((1-Fu(R) - f(1l-a)} + w(F) 1f S > u'(n)

neR
P¢(x) = (5.14)
o otherwise
where ¥(t):= -t'{%'(u')-l( - u(Cu") "X DI (5.15)

The latter expression can be simplified by observing that

u*(x*) = i{nf {xx*-u(x)} = x*(u')-l(x*) - u((u')-l(x*) (5.16)
x

(i.e., the Legendre Transform of u), but by (4.2) we know that
u(x) = -9%(-x), hence u*(x*) = -¢(x*)

using the 1latter in (5.16) at the point X~ --% » (5.15) reduces to the

simple expression:

o) = e (T . (5.17)

I+ remains to compute
sup {(1-F)u(n) - n(l-a)} . (5.18)
n€ER

Equating the derivative of the supremand to zero, we get the optimal

~d%
n from:

u'(n*) = %E%

which by (5.14) must satisfy % > u'(n®) -‘I—F ; then substituting ﬁ*

in (5.13), after some algebra, we finally get from (5.14):

P {F(g(x))ct(F( (x ))) + (1- F(s&))@(mﬂ if F(g(x)) >«
Pg(x) = (5.19)
| 0 1f F(g(x)) < a

i.e. Pr{g(x)2bl < a
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Note that the function h(t):=t¢( %-\ + (1-t)4( %E% ) in term of which

P¢ is expressed, is convex and increasing 0 <a <t <1 and h(a) = O,

so by this and (5.19), P¢(x) = h (max{a,F(g(x)}). It follows that if

F(g(x)) is convex so is P (Compare these results with [2].)

o

6. The Dual Problem of (DP)¢ for Right-Handside Programs

In this section we treat the special case of the general problem (SP):

(se)  inf {g (x): 8;(x) 2 b i=1,...,m}

i

which is obtained from (SP) by setting g(x,b):=b-g(x).
The penalty function P¢ is given here by:
By (0) = sup S (y"(b - 5(x)))
y20
However, by the additivity of Sp, since ytg(x) is not random, we can

write P as:

¢
P¢(x) = sup {w(y) - Ytg(x)}
y20
where
w(y):= p sup {n + Eu(th -m} . (6.1)
n€ER P

The corresponding deterministic primal (DP¢-RHS): inf{go-bPQ(x)} is then:
x

(DP. - RHS)  inf sup K(x,y)
v x y>0

with

R(x,y):= g_(x) + w(y) - y"g(x) (6.2)

m
Assume now, that go(x) is convex, and that {gi(x)}i=l are concave

S - L.
[UPESTN.P AT R WY
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functions, so (SP -RHS) is a convex program. Also Pq)(x) becomes convex

and so (DP¢-RHS) is a convex program.

We define the dual problem corresponding to (DP, - RHS) by:

¢

(DD

¢-RHS):

sup inf K(x,y)
y20 x

The main result of this section is a strong duality relation between the

pair (DP - RHS).

¢-RH.S) and (DD¢

Theorem 6.1 Let (SP-RHS) be a convex stochastic program and consider the

corresponding deterministic program (DP 6 RHS).

If the following condition holds:

IX€R suchthat g (x) >b, Vi€ (6.3)
where ]31 denote the infinum support of bi'
Then:
inf (DP¢-RHS) = max(DD¢-RHS) . (6.4)
Proof: Since go(x) is convex and {si(x) }:.l-l are concave then K(-,y)

given in (6.2) is convex for every y > 0.

Now the function w(+) given in (6.1) can be rewritten as:

w(y) = - inf F(n,y),
neER t

where F: R xR™ + R is defined by F(n,y) = -pn - pEu(}'Pi -n);

since u 1is concave it follows from [19], Theorem 1 that F(n,y) is

(jointly) convex, hence w(y) 1is concave and therefore K(x,+) 1is concave.

By a result in [16], a sufficient condition for the validity of (6.4)

for a general convex-concave saddle function K(x,y) is:

2 ¥, 2 0 such that y;VyK(x,y) >0 (x€ RrR? y ¥ > 0)

(6.5)

..
.....
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With analogous proof to the one given in Theorem 5.1 (eqs. (5.4)-

(5.5), w(y) is expressed as
w(y) = p(n(y) + l?.u(z;Q - n(y))

where n(y) 1s obtained from Eu'(zgh - n(y)) = 1.
Thus, Vw(y) = E(bu'(xgh - n)), hence (6.5) is here:
3y, >0 such that yt{E(bu'(zgh -n(y)) - gx)} >0
Vx € RP, y > 0.

The later 1is certainly satisfied if:
3 x, § > 0 such that Ww(y) = E(bu'(z-;h - n(y)) < gx) (6.6)
To show that condition (6.3) implies (6.6) it suffices to prove that:

infalw(y) < b Vi=1,...m . (6.7
y20 71

For all i € [1,m], let

b4¥4
w, (y;):=w(0,...,¥45... 0) = p sup {n + Eu( -n)
nER

Noting that

inf _ a—a—w()') < inf BL w, (y;) vi

0<y€ER™ Vi Osy,€R Vi
to prove (6.7) it suffices to prove that
1)
inf wi(y,) <b, (6.8)

Oﬁyi
Now wi(y) is concave and wi(O) = 0, hence by the gradient inequality

0= wi(0) <w (y) - ywiy)
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-
‘ and thus
w(y,)
lim w!(y,) < 1lim (6.9)
B >0 i i - y > yi
b Yi i
P
But wi is a derivative of a strictly concave function and thus is
strictly decreasing hence inf wi(y i) = lim w:'L(y i)'
Yilo ¥y
Moreover, using (4.7) we have the relation:
- v(a)
wi(yi) Y1 "o
7y
with a:= ry (p > 0), then from (6.9) and Lemma 4.3(a) we get the
desired result (6.8). -

The dual problem (DD ¢-RHS) is given by

sup inf K(x,y)
y20 x

To get a full meaning of this dual we fist prove:

aine Lemma 6.1 i:f Sp(Lb(x.b)) = Sp(i:f L, (x,)).
Proof:
= & .
;f " Sp(inf Lb(X,y)) - Sp(y + inf (go(x) -y g)x)))
. . n
g
o = Sp(ytb) +1inflg (x) -y g(x)} (by Lemma 4.1(c)]
--' ! x
o
L - 1nf {5,(%) + 8,0 - 3550}
- B x
r.’ = inf {Sp(ytb +g,(x) - y'g(x)} [by Lemma 4.1(c)]
- x
b .
;;::::? i:f {SP(L.D(x.y))}. i
¢
-
o
o
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Now K(x,y) given in (6.2) can be written, using again the

additivity property of Sp (Lemma 4.1(c)) as:
K(x,y) = Sp(Lb(x,y)) .

Hence, by Lemma 6.1, the dual problem (DD, -RHS) is

¢

p——— v
. i
Sy T vt . y '

(DD¢-RHS) sup S_(inf Lb(x,y)) .
y>0 X

Thus we have shown that while in the deterministic case, the Lagrangian

dual of (SP) is the concave program: sup inf Lb(x,y) in the stochastic
y>0 x

case, the dual program (DD¢-RHS) consists of maximizing the new certainty

of the Lagrangian dual function.

This result generalizes, to arbitrary utilities, a result in [2,

Theorem 4], proved for the exponential utility.
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